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Kramers—Kronig(K—K) relations exist as a consequence of causality, placing nonlocal constraints
on the relationship between dispersion and absorption. The finite-bandwidth method of applying
these relations is examined where the K—K integrals are restricted to the spectrum of the
experimental data. These finite-bandwidth K—K relations are known to work with resonant-type data
and here are applied to dispersion data consistent with a power-law attenuation codéigenent

from 1 to 2. Bandwidth-restricted forms of the zero and once-subtracted K—K relations are used to
determine the attenuation coefficient from phase velocity. Analytically, it is shown that these
transforms produce the proper power-law form of the attenuation coefficient as a stand-alone term
summed with artifacts that are dependent on the integration limits. Calculations are performed to
demonstrate how these finite-bandwidth artifacts affect the K—K predictions under a variety of
conditions. The predictions are studied in a local context as a function of subtraction frequency,
bandwidth, and power-law exponent. The K—K predictions of the power-law exponent within
various decades of the spectrum are also examined. In general, the agreement between
finite-bandwidth K—K predictions and exact values grows as the power-law exponent approaches 1
and with increasing bandwidth. @003 Acoustical Society of America.
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I. INTRODUCTION dispersion and attenuation ddtae., no out-of-band extrapo-
lations or model fitting were requirgdn contrast, this work
Fundamentally rooted in causality, Kramers—Kronigfocuses on the systems that exhibit monotonic dispersion and
(K=K) relations have proven to be powerful, practical toolsattenuation, specifically those whose attenuation coefficient
with applications across many disciplines of physics. In ul-can be described by a power law. The power-law form of the
trasonics, subtracted forms of the KK relations have beeattenuation coefficient is consistent with the behavior of a
used to accurately predict dispersion and attenuation in sygonsiderable number of solidsliquids?® and biological
tems exhibiting resonant  behavior (encapsulated tissue&®in the MHz range, and is thus of interest in ultra-
microbubbled) and power-law growthin attenuation. The  sonic research. An accurate model-dependent procedure for
principal difficulty in applying K—K relations directly to ul- applying K—K transformations specifically to power-law sys-
trasonic data is the finite bandwidth inherent in experimentems has been demonstrated pre\/ioagiy_ that study, the
tally measured spectra. By restricting the range of integratiogjata were fit to the power-law model, and the predictions are
to the measurement spectrum, artifacts are introduced thakpressed as functions of the fitting parameters. These ex-
can seriously impact the accuracy of K-K transformations. ltyressions for velocity and attenuation are derived by assum-
is still an open question as to whether an accurate genergig the model used to fit the data can be extrapolated to the
procedure exists for applying K—K relations directiiye.,  entire spectrum, fromv=0 to w—. The present study is
blindly) to any type of dispersion/attenuation data, or if somegjstinguished from this earlier work because here we assume
information (e.g., an analytical modehbout the target sys- that the model holds only within the bandwidth of interest,
tem beyond the bandlimited attenuation and dispersion datgnd we examine the impact this spectrally limited knowledge
is required to overcome the artifacts. imposes on K—K predictions. This paper is specifically con-
Previously, we examined the finite-bandwidth K—K cered with calculating the attenuation coefficient with
problem for resonant systems using experimental data frofijte-bandwidth K—K using the causally consistent form of
Albunex®’ microbubble suspensions. Within the measuremenije phase velocity as the input.
spectrum, which covered more than a decade in frequency, There are two aspects of the finite-bandwidth K—K
these data exhibited a single, well-resolved resonance with goplem that are specifically addressed in this work. The first
full-width at half maximum covering about one quarter of hart of the study examines the case where a subtraction fre-
the total bandwidth. For such a system, we found that acClyyencyw, is chosen at an interior frequency well within the
rate K—K inversions were possible using only the measureganqwidth of interestat least a factor of 2 above the lower
limit). This portion of the study is a test of the K—K calcu-
dElectronic mail: james.g.miller@wustl.edu lation procedure that was successfully applied to the resonant
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microbubble datd,where certain choices ab, across the transform of a real function. Since negative frequencies are

spectrum optimized the accuracy of the predictions. This pamot explicitly considered, no absolute value signs are ysed.

also has implications for composite media that have both

resonant and power-law featur@sg., particles suspended in

an oil). The second part of the study is concerned with preB. Kramers—Kronig relations for ultrasonic

dicting the power-law exponent of the attenuation coefficien@ttenuation and phase velocity

from the K—K transformation of bandlimited dispersion data.  Gjyen that the medium described b{(w,D) satisfies

In this case, both the subtraction frequency and lower limitne physical requirements of causality and finite energy, the

of integration are taken to be zero. The power-law trajectoryes| and imaginary parts ¢f(,D) can be shown to form a

of the K—K predicted attenuation coefficient is examined inyjlpert transform pair via Titchmarsh's theorem. The integra-

individual decades of frequendy.e., powers of 1pbelow  tion over negative frequencies can be mapped to the positive

and up to the upper limit of integration. axis, and the resulting expressions are commonly known as
In Sec. Il, we provide some background on the transfeikramers—Kronig relations. The complex wave number itself

characteristics of media with a power-law attenuation coefyerives its analytic properties from the transfer function, and

ficient and the causally consistent form for the phase velocynder the proper conditions the complex wave number will

ity. The finite-bandwidth forms of the subtracted Kramers—retain the domain of analyticity required of Hilbert transform

Kronig relations are also introduced. In Sec. Ill analytical pairs. However, it will not fulfill the square integrability re-

expressions for the finite-bandwidth K-K predictions of theqyirements since the attenuation coefficient must diverge as

attenuation coefficient are given. These results are the sum @f . to insure the square integrability &f(w,D). In spite

two terms, the first being the proper power-law result and the thjs, K—K relations betweem(w) and c(w) can be de-

second encompassing the finite-bandwidth artifact. In Segijyed by the method of subtractioisyhich insures conver-

IV, the analytical results from Sec. Il are used to calculategence of the integrals. Formed usingw)=iK () as the

attenuation coefficient curves under various circumstancegasis function, the unsubtracted and once-subtracted rela-

The discussions of these results are woven throughoyons are considered here. To allow for the straightforward

Sec. IV. adaptation to the restricted interval case, the relations are

given in their expanded forthThe unsubtracte¢zeroth re-
lation for the attenuation coefficient is

II. BACKGROUND
A. Ultrasonic attenuation and dispersion in power-law w @
systems 1 (2c(w') clw
Y a(w)= lim ——f ole) o)y,
The linear transport of ultrasonic waves across an iso- 0 T WO
tropic medium of thicknesB is accounted for in general by 7
a Fourier-domain transfer function of the form ' N ®
. Q !
H(w,D)=exdiK (w)D], (1) _ if clo) clw) | @
T )s o'+

whereK(w)=[ w/c(w)]+ia(w) is the complex wave num-
ber, a(w) is the attenuation coefficient, andw) is the phase Combining the two integrands into a single rational expres-
velocity. Experimentally, a power-law form of the attenua- sion and counting the powers af, one can see that conver-
tion coefficient gence requires that<—1 [wherew'/c(w’)~w'1*?]. This

is, of course, inadequate for the range of power laws consid-
ered here, and higher-order subtractions must be considered.
has been found to provide an accurate fit to broadband datehe once-subtracted relation in the expanded form is

from a variety of solid and liquid materials within the respec-

a(w)=agw'*® where O<e<1, 2)

!

tive measurement bandwidths. When E2) holds for the 2
entire frequency spectrum, the phase velocity takes the caus- ()= alwg)+ lim | — EJQc(w ) c(w) do’
ally consistent forri® Ul Tl o
! ! tar (1+¢) = O<e<1 "
- = _ e__ € < ’
(@) Clag) _ Fotan(1+e) 7 |(@"~wo) e e
(33 21 J @ ole)  clw)
and T ) o'+ @
B 2I D) o 3h o' g
_—a’(); nw_o e=0. (3b) +1fﬂc(wl) C(wo)d ,
Sl kA ST
[Equation(3b) can be obtained by taking the—0 limit of ™ @ —wo
Eq. (3a).] This form of the dispersion as well as the consis- ®' ©
tency of Eq.(2) and Eq.(3) have also been verified in the — 42
laboratory>® [Both a(w) and c(w) are even functions, a +£f“ c(e")  c(wg) © ®)
property derived from the fact thad(w,D) is the Fourier e o'+ ’
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counting the powers ofv’ after combining all four inte- Fgw)(ff,ﬂ) ————?ta

where wq is referred to as the subtraction frequency. By 20-0
7 (@) (1+¢)

grands, one can expect convergencedarl which covers
the range of power laws examined in this work. Note that for - 1 o2n+2
e=1, there is no dispersion so this case is naturally excluded. X( 201F 2 nte+3 .2z
We will refer to these K—K expressions whose integrals "o @

cover the entire positive frequency axi., (¢,02)—(0,%)] o 1 2"
as “unrestricted.” —201e > T
The interval-restrictedi.e., finite-bandwidth relations n=0 & Q
are given by o e wto 0o .
o' o ( o)o*—w nw—O'Q-i-w (93
1 (2(w') c
a(w)! 0=~ —f o) o) ) ) do’ 2Q-0o “tarf (1+8) =
T ) W —w = — — - —
TR, i S
* 1 a_2n+2
Qc(w’ C w 1+e S —
——J ( P ( ) o', (6) x| 20 n§=:()2n+8+3w2ﬂ+2
+w
* 2n
and _ 1+e 1 (1)_
' 1) 20 nZO 2n—e—1 2n
1 (ec(o’) clo
a(w)("’Q’nzl):a(wo)— —f —( ), ( )dw wtoc Q—w
TS WO — 't in——- . (9b)
w—0 Q+w
nc(w C(w) In the limit of e—0 (logarithmic dispersiop the remainder
- —f ity de becomes
@0 lim F{”)(o,Q)
Qc(w ) c(wg) o0
_J o —wg Y —o. de 200 o
 m\e(Q) c(o)
(OFs)
Qc(w ) C(wo) 2aqw o wto QO Q+ow
— ! + n—In —In—In
f o'+ wg Tolte, deh @) 2 w o Q-
wheren is the subtraction order and the limits of integration _22 1 g?n's _ 22 1 .
are such that 8<Q. n=0 (2n+3)2 @?"*3 =0 (2n—1)2 Q2 1)’
(10
Ill. THEORY In the limits c—0 and(>w, this becomes
The results shown in this section are calculated by sube(w)®?> 0
stituting the dispersion as given in E§a and Eq.(3b) into
the restrictgd interval forms, E@¢6) and Eq.(7). The forms = qgolte— Ot 2 _Otar{(lJrs)Z O<e<1
of the restricted K—K results depend on whether or not the 1+
evaluation frequencyp, and the subtraction frequenay,, (118
are contained within the integration interval. The viewpoint
taken in this work is that the bandwidth of integration de- 2/ 1 2aq
notes the extent of our knowledge about the complex wave = aowl“—Q;(C(—Q)Jr — =0 (11b

number, and thus we examine only the situation whete,
wo<{1. In all cases considered<@G<1. From the unsub- \hijch diverges a$)— as anticipated.

tracted relatioriEq. (6)] The relation with one subtraction yields the following:

()29 = o0l +F) (0, Q), ® (@) M=a00t " —agwp  +alw) +F Y (0,Q)
(129
Wherng‘")(cr,Q) represents the artifactual terms that explic- Lie . (@wg)
itly depend on the limits of integration =agw™ *+F 70 (0,Q), (12b
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where

Fi(o,0)
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In the limit e—0, the remainder term becomes

lim F% (0, Q)

£—0

ZCYO

o wto o woto
=——| wln—In —wgln—1In
2 1)

T w—o (O} wWo— O

O+w
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C!)2n+2 w3n+2

(14

Taking the limit of large() and smallo

lim a(w)(‘r‘“’l)
O>w,wq

(15b)

=agw— —=

which converge tax(w) in the limit of ()—c. The subtrac-

tion frequency wy exerts no influence on the shape of

a(w) @Y put only serves to “anchor’a(w)(®®Y to

a(w) at o= wy. To confirm these analytical results, the re-
stricted bandwidth relation of Eq7) was numerically inte-

integration. However, in the unsubtracted result the extra
terms grow with increasin€, while the once-subtracted re-
sult converges to the correct result@s-o.

IV. RESULTS AND DISCUSSION

A. Locally anchored performance (wo=20)

The unrestricted K—K relations have demonstrated their
utility for power-law systems, since they generate analytical
forms for the attenuation and dispersidty. (2) and Eq.(3)]
that are consistent with experimental date this model-
dependent approach the K—K inversion is reduced to the
simple act of determiningy, and e through some fitting
procedure. Even though the model-fitting method has so far
proven a successful approach for performing K—K transfor-
mations of power-law systems, there are two principal rea-
sons for investigating their behavior with the more general
restricted-bandwidth K—K. First, the restricted K-K method
has been shown to work for resonant-type data without using
any model-dependent or extrapolated paramétérss then
natural to investigate the method with other types of data to
assess its wider applicability. Second, it is possible to have a
system that has a combination of localized resonant struc-
tures riding on a power-law background. Since many liquids
exhibit power-law attenuation, suspensions of microbubbles
or microspheres in such a liquid could display this composite
behavior.

As shown in the previous study of the microbubble sys-
tem, the accuracy of the restricted K—K prediction for an
isolated resonance comes down to the choice of the subtrac-
tion frequencyw,. Certain choices ofvy from within the
data spectrum effectively minimize the finite-bandwidth arti-
facts, and the rationale behind these choices was demon-
strated using an analytical moddFor the present power-law
case, the accuracy of the restricted-bandwidth approach has
more to do with the bandwidth of the data than the choice of
subtraction frequency. The results shown in this sedfsa®
Fig. 1) are meant to examine the restricted K—K approach in
a manner consistent with the way they are applied to the
resonant data; specifically the subtraction frequency is cho-
sen from the known bandwidth and is distinct from the band
edges. Also, the limits of integration include realistic mea-
surement bandwidths.

In Fig. 1 the restricted K—K predictions, calculated us-
ing Eq.(12), are plotted over a region around the subtraction
frequencyw, for various limits of integration. The region of
the spectrum displayed in the figufieom 0.5w, to 1.5w()
shows only a portion of the total spectra used to calculate the
four K=K curves. This spectral region displayed in Fig. 1
encompasses the widths of resonant peaks encountered in
data from encapsulated microbubbl(aw,eS/AwLuallllme~1)

grated under a variety of conditions using the form of theand polymer microsphefe (wes/A wiulvidn~10)  suspen-
dispersion in Eq(3a). In all of these comparisons, the ana- sions. This serves to illustrate the behavior of the predicted
lytical expression and numerical integrations produced eseurves over those frequency scales encountered in resonant

sentially equivalent outcomes.

data with resolved peaks. In par@), the 1+es=1.1 results

Both the zeroth- and first-order calculations produce reare plotted. For the curve calculated using the widest band-
sults with the same general structure—the correct power-lawvidth (with lower limit of integrationo=0.05w, and upper
form of the attenuation coefficient coexisting with additional limit of integration{) =50w,), the K—K prediction accounts
additive terms that depend upon at least one of the limits ofor 89% of the variation in the exact curve. If the lower limit
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1o eemirion curve. The subtraction frequency and lower limit of integra-
B tion are taken to be equal and arbitrarily close to zero so that
10- L onla0s, e s all terms containingr and wq as factors vanish. The once-
2 N subtracted results fax(w)(*®Y, expressed in Eq12), are
i L P calculated for four power laws,#e=1.9, 1.5, 1.1, and 1.0
d (logarithmic dispersion The objective is to identify the re-
S o gions of the spectrum in which there is agreement between
¥ the predicted and exact power-law exponents. In all of the
o results to follow(shown in Figs. 2—f the power-law fits to
a(w)(@*D have anR? value =0.99.
2 : ' . T . The results of the £e=1.0 case, where the dispersion is
o4 os O etz soncy 14 16 logarithmic, are shown in Fig. 2. In pané), a(w)(*D
w0 and a(w) are compared on a log—log plot covering three
b, [oet eanl?, decades in frequency up to _thg upper limit of mtegra@m
L e S One can see that the prediction tracks the exact trajectory
R == olu =03, Doy - 500 well for w/Q<0.05. In panekb), a(w) Y and «(w) are
k) compared on a linear—linear plot over the range 0004
= (=0.01, two decades down from the upper limit. A power-
%w- law fit to a(w) (Y for just this decade yields-e=0.99.
3 In panel(c), a(w)*Y anda(w) are compared over the top
¥ 0 decade, 0.£w/Q<1, where a power-law fit tax(w)(*
yields 1+e=0.77. Thus, to match the proper power-law tra-
. jectory with restricted K—K to about 1% in this case requires

- i o - - - A knowledge of the dispersion about 1.5 orders of magnitude

normalized frequency w/w, above the frequency scale of interest.

FIG. 1. (a) The comparison ofr(w)(”?*? and a(w) for 1+s=1.1 around The five panels of Fig. 3 display the results for theel

the subtraction frequency, for bandwidths indicated in the legends) =11 Cased Iln this ﬂguréﬂnd the ones to foIIoWn addltl(_)n
Comparison of(w)® and a(ew) for 1+e—1.9. to a(w) ™Y and a(w), we also plot the dominant artifac-

tual terms from Eq(12). For the cases examined here where
wqg and o are arbitrarily small, the artifact is due to two

of integration is moved up to the boundary of the plotted .
9 P Y P terms—referred to as the(¥ series”

curves =0.5wq) while holding the upper limit fixed, the
predicted variation falls to 75% of the target value. The pre-

dicted variation decreases further as the upper limit is low- %o r{ ™ - 1 w?"
—tan (1+¢) =20 > ——— (16)
ered, down to 26% of the exact value for the narrowest band- 2 n-1 2n—g—1 2n
width case,c=0.50wy to Q=2wq. In panel(b), the 1+
=1.9 results are shown. Here, the predictions are relativelynd the “log term”
insensitive to changes i, so the only changes from curve
to curve are irf). In this case the predicted variations in the 0 - 1—w/Q
attenuation coefficient range from 41% down to 5% of the ?tar{(lﬁ—s)g wlte Inm. (17)

exact value. The impact of these results on predicting peaks
and trends ultimately depends on many system-dependeht panel(a), the quantitiesa(w)(*Y and a(w) are shown
factors (e.g., relative peak-to-background rati®hen the on alog—log plot covering three decades of the spectrum up
peak is localized abovébelow) the subtraction frequency, to . Moving down the frequency scale, the two curves
the peak-to-background ratio will be ovemde)p estimated. merge in the middle decade similar to the previous case. In
If the resonant peaks are clearly resolved, when the peak @anel(b), ()Y anda(w) are compared on a linear plot
near wg it can be reproduced without significant distortion, over the third decade down fronf). Here, the fit to
especially for the smaller values of In fact, the restricted a ()b yields an exponent of ts=1.09, demonstrating
K—K transform is like a “local filter” in this case, suppress- the high degree of agreement at this scale. In pé&elthe
ing the monotonic global trend in favor of the localized two quantities comprising the error are plotted over the same
variations. decade as pané¢b). The two terms act in opposition to one
another, with the() series having the greater magnitude.
Note that the scale of thg axis in panel(c) is an order of
magnitude smaller than that of par@). In panel(d), the

In this section, we apply the restricted K—K relations in exact and predicted K—K results are plotted for the top de-
a manner suited to predicting power-law exponents for theade, and the deviation between the two is clear. A power-
attenuation coefficient. For this purpose, the spectrum will béaw fit over this decade produces-2=0.86. This is 78% of
examined in specific decadése., powers of 1pdown from  the target value, very similar to the previous case in the top
the upper limit of integration. In each decade, a power law islecade. In pandk) the error terms are shown to have similar
fit to the predicted curve to estimate the exponent for theshapes and are largely counterbalancing one another. Also

B. Predicted power-law trajectories, g, 0—0
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than a(»)(@*Y and a(w), as the vertical axis is about 20
times broader than in pan@l). Both error terms individually
diverge in thew—Q limit, but one can show that together

these divergences cancel.

Figure 4 contains the results for the-2=1.5 case. In
panel(a), the quantitiesy(w) ("> and«(w) are shown on a

K—K prediction deviates noticeably from ) in the second
decade and higher. In pané) a(w)®®Y and a(w) are
compared linearly in the 0.081w/)<0.01 decade. Here, the
correspondence is very good with a power-law fit of &l
=1.46. As shown in pandk), the ) series term is about an
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FIG. 3. (a) Log-log plot of the exact and restricted-interval once-subtracted
K-K prediction for attenuation coefficient for+le=1.1. The plot covers
three decades in frequencip) A linear plot of the exact and predicted
attenuation coefficients over the third decade, 0<00/)<0.01. (c) The

two error terms, the) series/Eq. (16)] and the log termfEq. (17)], in the
K—K calculations for the third decade. The vertical scale is an order of
magnitude narrower than that in partb). (d) A linear plot of the exact and
predicted attenuation coefficient over the top decad€)<<1.0). (e) The

two error terms in the K—K calculations for the top decade. Here, the ver-
tical axis is 20 times broader than that of patwl

itself about an order of magnitude smaller thafw). In
panel (d) a(w)™®Y and a(w) are compared on a linear
scale over the top decade. Similar to the two previous cases,
FIG. 2. (a) Log—log plot of the exact and restricted-interval once-subtractedthe predicted exponent of+le=1.13 in this top decade is
only about 75% of the target value. Pafel shows the two
artifactual terms inx(w) (%Y. The two terms have similar
Q<0.01.(c) A linear plot of the exact and predicted attenuation coefficient Shapes although they differ in sign, and Qeseries clearly
has the greater magnitude of the two. Note thatytlais in
panel(e) is about a factor of 5 broader than that for pafuk!

The five panels of Fig. 5 display the results for theel
note that the two error terms are individually much larger=1.9 case. In pandh), the quantitiesy(w)(”*? and a(w)
are shown on a log-log plot covering six decades of the
spectrum up td). The K—K prediction deviates from(w)
increasingly from the smallest decade up Qo Panel(b)
showsa(w)“*Y anda(w) two decades down from the top.
Here, the correspondence is not as strong as in the previous
three cases, but the fit exponent af 4=1.77 for this decade
log—log plot covering three decades of the spectrum. Thaccounts for 93% of the target value. For the artifact compo-
nents shown in panét), it is clear that the)-series term is
dominant, with no significant contribution from the log term.
In panel(d) a(w)@*Y anda(w) are compared over the top
decade. Here, the difference is dramatic, although the fit ex-
ponent of He=1.41 is 74% of the target value, a similar
order of magnitude larger than the logarithmic term, but ispercentage as in the other power-law cases in the top decade.
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FIG. 4. (a) Log—log plot of the exact and restricted-interval once-subtracted

K—K prediction for attenuation coefficient fortle=1.5. The plot covers
three decades in frequencip) A linear plot of the exact and predicted
attenuation coefficients in the third decade, 0:0@1<0.01.(c) The two
error terms, the) serieg[Eq. (16)] and the log terniEq. (17)], in the K-K

Panel(e) shows the two artifactual terms im(w)(”*Y. In
panel (e), the dominance of thé€) series in the artifact is
clear, although the logarithmic term counterbalances
somewhat.

In each respective decade shown, €heeries term is of
a similar magnitude across the theee0 cases, while the log
term provides less of a counterbalance sagicreases. To
illustrate this trend, we add E@16) and Eq.(17) to get the
total artifact, writing the logarithm in Eq17) in its power
series form. The first term in the total artifact series is

1 0° 1
1-¢ ;_

(For w<€Q)/2, this first term approximation is accurate to bet-
ter than 109. In the last bracket of Eq18), the first term is

w

Q-

(18

2 ™
aow“s;tar{(l-l-s) 5

from the ) series and the second is from the log term.

The tangent can also be expanded to first order d¢ltam)
X (m/2)]~(e—1)(7/2) (which is accurate to better than 10%

for £>0.66
r 1 w
2 Q

¢ )
=—a0w1+€( )5

—+(e—1)

(I)S
As shown by the above expression sasicreases towards 1,
the log-term contribution goes to zero while the singularity

1 0°

1—e e

2
a0w1+8— (e—1)
T

(19

calculations for the third decade. The vertical scale is an order of magnitudin the first ()-series term compensates for the zero in the

smaller than that in pangb). (d) A linear plot of the exact and predicted
attenuation coefficient over the top decad#(2<1.0). (e) The two error

terms in the K—K calculations over the top decade. The vertical axis is about

5 times broader than that of parel).

a((r’Q’l>(107k+ lQ,a)o)
7Y (10740, wg)

(1+e) ™Y =logg

tangent, resulting in a finite nonvanishing contribution.

be calculated using the following formula:

2 7 [ 100D 1
_ _ _ 1-k)(2n—1)
1+ 7Ttar{(1+s)2 nZl(Zn—s—l 2n—1>10(
1+ Starf (1+6) = 3 1o 10 k-1
T 271 \2n—e—1 2n—1
4 1
1-— In 1014+ ——— |10t~ WD
wznzl (2n—1 <2n—1)2)
=1+log; o 1 1 (e=0), (20b)
1- — In 1064+ ————| 10 K@=
w2 nzl (2n—l (2n—1)2)

The power law predicted by K—K for a given decade can

wherek is a positive integerpy<10%, ando<10"X(). Once again the logarithms in the artifact have been written in the

power series form. The top decade is givenksyl and the lower decades by the higher integers. In the top decade, this
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formula matches the exponents numerically fit to the predicted curves to 2% and in the lower decades it matches better than
0.8%. Below the first decadgée., k=2), the above formula is essentially determined by the first terms in the infinite series

2 (10D
1+ —tan (1+&)= || ———1|1017W
T 2 1-¢

(1+e) 28 V=1+¢+logg 5 T (0<e<1), (213
1+ —tan (1+¢)=|| ——1]|10°X
T 2/\1—¢
4
1——2(Inld“1+1)10<1‘k)
—1+1ogyg 774 (6=0). (21b)
1-—(In10+1)10°
e

As shown in this section, the restricted K—K method issingle decade in frequency is a challenging takeast with
clearly not practical for the prediction of power-law expo- a single set of transducers, pulsers, and ampljfiétsr ex-
nents in the £1+¢<2 range. Even in the most favorable ample, if one were interested in the attenuation behavior
case ofe=0, accurate predictions require the data to span around 2 MHz, dispersion data would be required up to at
spectrum up to 50 times the lowest valid frequency in thdeast 100 MHz to achieve reasonable accuracy. The data
measurement. Such wideband data are rarely available asould also need to extend down a decade or so below 2
acquiring dispersion and/or attenuation data over even WHz. A direct fit of the data to the power law model of Eq.
(2) and Eq.(3) is probably the best approach as the model-
independent method is so spectrally demanding.

wla One use of these results could be in extrapolating the
%,oa_' range of knowledge of a system beyond the finite spectral
X0t ] window of our measurement system. It is possible that the
:°1o‘-: power-law behavior only persists over a limited spectrum,
§1o*-' and the system exhibits some other type of behavior else-
o] - bandimited KK where. The restricted K-K integrals could be interpreted_as
Jh i Tl PR P R P representing the power-law portion of the system’s behavior.
normalized frequency v/ A successful fit of the data to the causal model within the
r:_ b : o o measurement bandwidth could then indicate that the disper-
5 £, S sion follows the model for several decades beyond the high
3" = bandiimited K 3 \.\ end of the data; otherwise, the fit to the attenuation data
2] :, ™ would exhibit some deviation. The quantitative implications
£ -l g N of this idea remain to be explored.
344 L 3 == 2 sories AN
Tl L ¥ 3 - - logterm S
B s o s sy supy S JSP) TS MYV S0
normalized frequency «/Q normalized frequency w /2
w]g. 1 o /, C. On _predicting dispersion from the attenuation
P ot - N s B coefficient
Ezo- §-1o- . . As shown above, in predicting the attenuation coeffi-
;‘5' 520 ™, cient the restricted K—K relations produce the correct power-
:ss“" '\gm_ AN law form for both zeroth- and first subtraction orders. Even
1 7 . _ Tl g “-\_ though the zeroth-order result does not converge in the
¢ S 40— Q—oo limit, as the bandwidth increases the slope of the pre-
0 02 04 06 08 10 0 02 04 06 08 10 . .
normatized frequency /2 normalized frequency « /9 dicted attenuation does approach the correct value. When

predicting the dispersion from power-law attenuation for the

FIG. 5. (a) Log—log plot of the exact and restricted-interval once-subtractedyarious orders of restricted K—K, the results are more com-
K—K prediction for attenuation coefficient fortle=1.9. The plot covers six pIex in both form and interpretation The dispersion predic-
decades in frequencgb) A linear plot of the exact and predicted attenuation )

coefficient for the third decade, 0.081/Q<0.01.(c) The two error terms, 10N Problem differs from the attenuation case in two impor-
the Q seried Eq. (16)] and the log terniEq. (17)], in the K—K calculations ~ tant respects(l) the lowest order convergent relation is the

for the third decade. The vertical scale is of the same order of magnitude agvice-subtracted form, an®2) the lower-order nonconver-
in panel(b). (d) A linear plot of the exact and predicted attenuation coeffi- N
cients for the top decadey/(2<1.0. (e) The dominant error terms in the gent results do not prOdUQe and() dependent terms that

K—K calculations for the top decade. The vertical scale is of the same orde?orrespond_ to t_he _CorreCt funCti_Onal f(_)rm of the dispel’sion.
of magnitude as in panétl). The wider implications of the dispersion results within the

J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003 Mobley et al.: Causal prediction of power-law attenuation 2789



context of the search for a more generally applicable K-KACKNOWLEDGMENTS

method are yet to be explored.
y P This work is supported in part by NIH Grant No. R37

V. CONCLUSION HL40302. Dr_. Mobley is also supported by an appointment
_ . to the Oak Ridge National Laboratory Postdoctoral Research
~ Inthis work, we have demonstrated the impact of band-Associates Program administered jointly by the Oak Ridge
width restriction on the causal prediction of the attenuationnstitute for Science and Education and Oak Ridge National
coefficient from dispersion for power-law systems. The cal-_aboratory. Oak Ridge National Laboratory is managed by
culations using both the zeroth- and first-order subtracted)T-Battelle, LLC, for the U.S. Dept. of Energy under Con-
K-K relations generate analytical results as sums of twQract No. DE-AC05-000R22725.
terms. The first term is the proper power-law form for the
attenuation coefficient, while the second consists of all the
artifactual factors which have explicit dependencies on thet; mobley, K. R. Waters, M. S. Hughes, C. S. Hall, J. N. Marsh, G. H.
limits of integration. We have shown that the once-subtracted Brandenburger, and J. G. Miller, “Kramers—Kronig relations applied to
relation converges t&(w) as the bandwidth grows to encom- finite bandwidth data from suspensions of encapsulated microbubbles,” J.
| . f the f is while th Acoust. Soc. Am108(5), 2091-21062000; 112(2), 760—-761E) (2002.
pass larger pOI’tIO_nS 0 € requen(_:y axs w _I e the Zero'ZK. R. Waters, M. S. Hughes, J. Mobley, G. H. Brandenburger, and J. G.
order transform diverges d3—. As illustrated in the nu-  willer, “On the applicability of Kramers—Kronig relations for ultrasonic
merical studies, the restricted K—K predictions grow more attenuation obeying a frequency power law,” J. Acoust. Soc. A8&2),
accurate astz—1. The predictions are also better when the ,356-563(2000. . . . .
f le of interest is farther removed from the upper T. L. Szabo, “Causal theories and data for acoustic attenuation obeying a

_requenlcy sca - . : . pp frequency power law,” J. Acoust. Soc. A7, 14—-24(1995.
limit of integration. The bandwidth-restricted K—K relations 4r. A. Duck, Physical Properties of Tissue: A Comprehensive Reference
reveal the causal linkage between power-law attenuation angBook(Academic, New York, 1990 p. 112.

; ; ; ; ; At Tissue Substitutes, Phantoms, and Computational Modeling in Medical
dlspersu_)n in the analytlca}I results. In the direct appllcatlon Ultrasound, ICRP Report No. 6dnternational Commission on Radiation
to experimental data the link may be somewhat obscured aspjts and Measurements, Bethesda, MD, 1998 8.
the finite-bandwidth artifacts can be substantial. However,°H. M. NussenveigCausality and Dispersion Relatiori&cademic, New
with the analytical expressions available in this paper it is7Y0rk, 1972, pp. 28-33.
possible to conceive of methods for correcting these results, > MoPIey, K. R. Waters, C. S. Hall, J. N. Marsh, M. S. Hughes, G. H.

o . Brandenburger, and J. G. Miller, “Measurements and predictions of the
perhaps within the context of a general model-independent ppase velocity and attenuation coefficient in suspensions of elastic micro-

approach to finite-bandwidth K—K calculations. spheres,” J. Acoust. Soc. AmM062), 652—659(1999.

2790 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003 Mobley et al.: Causal prediction of power-law attenuation



